- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Mueller, Marshall (3)
-
Murphy, James M (3)
-
Tasissa, Abiy (3)
-
Fullenbaum, Scott (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points $$[\x_1, \x_2, \ldots, \x_n] = \X \in \R^{d \times n}$$ and a vector $$\y \in \R^d$$, the goal is to find coefficients $$\w \in \R^n$$ so that $$\X \w \approx \y$$, subject to some desired structure on $$\w$$. In this work we seek $$\w$$ that forms a local reconstruction of $$\y$$ by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of $$\X$$ that are close to $$\y$$ when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of $$\X$$ have a unique Delaunay triangulation, the optimal coefficients' number of non-zero entries is upper bounded by $d+1$, thereby providing local sparse solutions when $$d \ll n$$. Under the same condition we also show that for any $$\y$$ contained in the convex hull of $$\X$$ there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing $$\y$$. This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of $$\X$$. We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Fullenbaum, Scott; Mueller, Marshall; Tasissa, Abiy; Murphy, James M (, IEEE)
-
Fullenbaum, Scott; Mueller, Marshall; Tasissa, Abiy; Murphy, James M (, IEEE)
An official website of the United States government
